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Thermodynamically self-consistent integral-equation theory for pair-correlation functions
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We propose a “mixed” integral equation for the pair correlation function of molecular fluids which inter-
polates between the hypernetted-chain and Percus-Yevick approximations. Thermodynamic consistency be-
tween the virial and compressibility equation of state is achieved by varying a single parameter in a suitably
chosen mixing function. The integral equation proposed here generalizes the suggestion by Rogers and Young
[Phys. Rev. A30, 999 (1984] to an angle-dependent pair potential. When compared to available computer
simulation data, the equation is found to yield excellent results for both the thermodynamic properties and the
pair-correlation functiond.S1063-651X96)02507-X]

PACS numbds): 61.20.Gy, 61.25.Em

The pair-correlation functiondCF’s of molecular fluids  fluids, are thermodynamically inconsistent, i.e., the pressure
are the lowest order microscopic quantities which, on onebtained from the virial and compressibility routes have dif-
hand, contain information about the structure of the fluidferent values.
and, on the other, have direct contact with the underlying In this communication we extend the method of Rogers
intermolecular interactiongl,2]. The values of these corre- and Young[8] and impose thermodynamic consistency on
lations as a function of intermolecular separations and orienthe solutions for molecular fluids by modifying the closure
tations at a given temperature and pressure are found eitheglation with a formula which contains an adjustable param-
by computer simulations or by semianalytic approximateeter and then by varying this parameter until consistency is
methodg 3]. In the latter approach one solves the Ornstein-achieved. We show the suitability of this method for a fluid

Zernike (OZ) equation, of HER. The potential energy of the interaction of a pair of
HER is represented as
h(1.2)—C(1.2)=7(1,2)=pff c(1,3[ (2,3 +c(2,3 ]dxs, o[ for rp,<D(f15,Q4,Q5) .
D ULD=10 for r,=D(f1,01.0,), @

where p; is the number density of the fluidn(1,2) whereD(FlZ,Ql,Qz) is_the d_istance of clos_est ap_proa_\ch of

=9g(1,2)—1 andc(1,2) are, respectively, the total and direct tv_vo molegules with quentatlonﬁll and (), in a dlrect|o_n

PCF’s, with suitable closure relations such as the Percudiven by rip. For D(r»,€;,Q;) we use the expression

Yevick (PY) equation, hypernetted chaitiNC) equation, 9iven by the Gaussian overlap model of Berne and Pechukas

mean spherical approximatidiMSA), etc. Approximations ) ) ) .

are introduced in the theory through these closure relations, 1he PY and HNC integral equation theories are given by

In Eq. (1), i=x; denotes both the locatian of the center of the OZ equation coupled with the closure relation

theith molecule and its relative orientati¢y , described b

the Euler angle®, ¢, and . @ g c"(12=f(1.2[1+¥(12)], (33
Compared to atomic fluids for which solutions to the OZ g

equation have been obtained for a variety of pair potentials

over wide ranges of temperature and density, our knowledge HNC _ _ B

of the correlation functions of the fluid of nonspherical mol- ¢TH(1,2=h(1,2)=In[1+h(1,2)]-pu(1,2), (3D

ecules is meagef4]. In recent years numerical methods respectively.  Here f(1,2=exg—pu(1,2]-1, and

have, however, been developed to solve the OZ equatiop—(k.T)~%. We find it convenient to separate the overlap
with the PY and HNC closure relations for nonspherical mol-3n4 nonoverlap regions and choose

ecules of fixed geometry. Patey and co-workgs$ have

solved both the HNC and PY equations for systems of hard
ellipsoids of revolutiongdHER), hard spherocylinderdHSC) (1,2=
and for model fluids characterized by the pair potential of a ’ cH(1,2 for nonoverlap region. (4b)
generalized Maier-Saupe type. Ram, Singh, and Sidgh

have solved the PY equation for HER and for the Gay-BerneSince in the overlap region-1h(1,2)=g(1,2) is zero, Eq.
potential[6]. Though the results found for these model po-(4a) is exact. Forc®“(1,2) one uses a closure relation given
tentials are in qualitative agreement with computer simulaby Eg. (3) or any other form.

tion resultg4,5,7], the quantitative agreements are not satis- In order to reduce and solve Ed) with a closure relation
factory. Moreover, these theories, as for the case of atomiit is convenient to expand all angle-dependent functions in

—-1-v(1,2 for overlap region, (49
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spherical harmonics either in a space-fix8#&) frame or in a .
body-fixed (BF) frame. For example, the expansion of the Cii,m(I12) = f C(r12,Q21,Q2) Y] 1(21) Y§ 1(Q22)dQ1dQ,
direct PCF in a BF frame is written as

c(1,2)=c(r15,Q7,0Q,) " fNovC(rlz’Ql'Qz)Yﬁm(Ql)
=2 Ciim(r2Yim( Q)Y n(Q,), (53 X Yim(2)d(2,d0,, 6)
iqiom

where OV denotes the overlap and NOV in the nonoverlap
regions. Applying the relation@) and using the orthonormal
properties of the spherical harmonics, E§) can be ex-
pressed in simple form

wherem=—m, the coefficients:ilizm(rlz) are defined by

Cuian(139= | €112, 0901V (0)d0,d0,.

m
o Ciign(f1d= 2 [—4m mone ~Yizigm (112)

igim’

For fixedr,,, we can split the integral in Ed5b) into two —cl,l,m,(rlz)]Allffn‘ r12)+c, i, m(r12), 7
parts corresponding to the regions of orientational space
where the particles do and do not overlap. Thus we have where

(2i1+1)(2i1+ D) (2, +1)(2i5+ D" o
2LID(2L +1) Cy(i4i1L;000 Cy(iLi,L";000)

o 1
141
Aiiis (f)=—— E

LL'M

X Cg(iqigLimm’ M) Cy(izioL"smm M) y(r o). (8)

Here Cy(ii,i;m;m,m) are the Clebsch-Gordon coefficients.
In actual appllcatlonsI s m(r12) used in Eq.(7) are obtained from the expansion given in our earlier pjgeand for

ciiin(r 1) for HER in [10]

(2i1+1)(2i1+ D (2ip+1)(2i5+ D" .
HNC(rlz)— ’ .HE., s 2.7 D@,5 D) Cq(i1i7i1;000)Cy(izisi,;000
ll’|1’|2’|2
1y " ryn " . (9 ! !
X 2 Cg(|1 i1;m'm m)cg(|2|2|21m m m)jr hl”l"m”(rlz) r [— ! i m’(rlz)]drlZ' (€)
12

To achieve thermodynamic consistency we use a closurgs]. Hereinafter we refer to the closure relation of EXD) as

relation the thermodynamically consiste(EC) relation.
The numerical methods used to solve Ef) with the
% 2rn(rlz) (rlz)cHlNz%(rlz)Jr[l s(ryp)]cf Izm(rlz), closure relation is the same as described in our earlier paper

(10)  [4]. The number of terms included in the rotational invariant
expansion of the correlation function is the same as given by
where set Il of Table | of Ref[4]. Here we report the results for a
fluid of HER. A state of a HER fluid is defined by the pack-
S(rpp)=1—€ 12, ing fraction = (/6)p§ Xo, Wherex,=2a/2b, 2a being the
major axis and B(=d,) the minor axis of a ellipsoid and

Here a, an adjustable parameter, is used to achieve thermd? = =p;dg. All numerical calculations have been carried out
dynamic consistency. In writing Eq10) it is assumed that Using M=1024 grid points with grid widthAr=0.01, the

the error introduced in the values of the PCF’s by the PY andtep size in Fourier space beidg= =/MAr. All one di-
HNC closures are of the same nature for all harmonic coefmensional integrals are evaluated using the trapezoidal rule.
ficients and that the exact values lie in between the valueghe solution of the PY, HNC, and TC equations have been
given by these two theories. These appear to be reasonalibtained at several densities and at a different consistency
assumptions, at least for the fluid of HER for which detailedparameter fox,=1.0, 2.0 and 3.0.

comparison between the results found from the PY and HNC Once the PCF'’s are known, they can be used to calculate
theories with the computer simulation results are availablgressure from the virial and compressibility equations in a
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FIG. 1. The spherical harmonic coefficiegs,,(r)/4 in the
body-fixed frame forxg=2.0, »=0.3702. The solid, dashed, dash-
dotted curves are, respectively, TC, PY, and HNC results. The solid 0-000 o A o
circles are MD results of Talbot, Perera, and PdtRgf. [5]). ’ ) % ’ ’

straightforward way[3]. The value ofa is adjusted till the FIG. 3. Pressure as a function of fluid density f=2.0. The
value of pressure found from these two routes coincide withsojid circles represent the Monte Carlo result of Mulder and Frenkel
each other. The value af found in this way forx,=1.0, 2.0,  (Ref.[11]) and the solid curve is the TC result. The dash-dotted and
and 3.0 are, respectively, 0.16, 0.33, and 0.50. Note that th@e dashed curves are, respectively, PY and HNC results. Mere,
value of « for x,=1.0 which corresponds to a hard sphere,andC denote the virial and compressibility results, respectively.
coincides with that of Rogers and Youf®). The value ofx
is found to increase witk, which means that the HNC com- very well with the computer simulation results of Mulder and
ponent in Eq(10) increases witlx,. This appears reasonable Frenkel[11]. One may, however, note that the simulation
from the fact that as, increases the “effective” repulsion results given in these figures are for the exact HER overlap
between two ellipsoids of revolution becomes more like awhich is not identical to the Gaussian model used by us. It
repulsion between soft spheres. This softness increases withay therefore be possible that the results found for the
increasingx,. One way to visualize this is to calculate the Gaussian model may not equally match with the simulation
“effective” potential from the angle averaged Boltzmann results for all the harmonic coefficients of the PCF’s. Fur-
factor. thermore, the value ok needed to achieve self-consistency
The kind of agreement one finds for results found fromfor the exact HER overlap may also differ from those re-

the PY, HNC, and TC theories with the computer simulationported here. But these observations do not change the con-
results is revealed from Figs. 1 and 2 in whighy4(r) har-  clusions reached here.

monic coefficient of the total PCF is plotted as a function of  |n a theory of freezing of molecular liquids into a nematic

r for xo=2.0 and 3.0, respective_ly. The TC thgory givesphase the structural paramets?) defined ag12]
better agreement with the simulation results. In Figs. 3 and 4 12

we plot pressure as a function of density xge=2.0 and 3.0, 20.0
respectively. The values found from the TC relation agree 7
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FIG. 2. The spherical harmonic coefficieg,(r)/4m in the
body-fixed frame forxg=3.0, =0.3702. The curves are the same  FIG. 4. Pressure as a function of fluid density fg=3.0. The
as in Fig. 1. curves are the same as in Fig. 3.
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6.0, ¢ is related to the isothermal compressibility at$) and
the higher-order coefficient to the freezing parameters. The
501 quantity ¢ and ¢! are found to be very sensitive to the
,f_mm) approximations involved in a given integral equation theory.
40 mmﬁ/ /,/ ! In Fig. 5 we compare the values of the structural parameters

-sso10 ¢ andc found from these theories for,=3.0. The PY
theory is believed to underestimate the angle-dependent part
of the PCF’s while the HNC theory overestimates them. This
is seen from the general instability condition for isotropic
liquid which is derived from the Kerr constafit3] and is
written as

0.40

FIG. 5. The structural parametéf? at x,=3.0. The solid, the The HNC theory predicts thaF the isotropic fluid Of. HI.ER will
dash, and the dash-dotted curves are, respectively, PY, HNC, ar%e unstable_ for_n>0.435 while for TC. theory t.hls IS f_o_r
TC results. 7=0.50 which is close to the isotropic-nematic transition

packing fraction[11]. For PY theory it is found that the
isotropic phase remains stable even at very high densities.

O =(2i,+1)(2i,+ Dpff dr dQ,dQ,c(r,Q,,Q,) In conclusion we wish to emphasize that the the'rmody—
12 namically self-consistent theory proposed here provides ac-
% Pi1(00391)|:’i2(00892) curate values of both the pair-correlation functions and ther-

modynamic properties of molecular fluids.

plays an important role. Hei, is a Legendre polynomial of We thank the Department of Science and Technology,
degreei and angles refer to a space-fixedixis. Note that New Delhi for financial assistance through a research grant.
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