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We propose a ‘‘mixed’’ integral equation for the pair correlation function of molecular fluids which inter-
polates between the hypernetted-chain and Percus-Yevick approximations. Thermodynamic consistency be-
tween the virial and compressibility equation of state is achieved by varying a single parameter in a suitably
chosen mixing function. The integral equation proposed here generalizes the suggestion by Rogers and Young
@Phys. Rev. A30, 999 ~1984!# to an angle-dependent pair potential. When compared to available computer
simulation data, the equation is found to yield excellent results for both the thermodynamic properties and the
pair-correlation functions.@S1063-651X~96!02507-X#

PACS number~s!: 61.20.Gy, 61.25.Em

The pair-correlation functions~PCF’s! of molecular fluids
are the lowest order microscopic quantities which, on one
hand, contain information about the structure of the fluid
and, on the other, have direct contact with the underlying
intermolecular interactions@1,2#. The values of these corre-
lations as a function of intermolecular separations and orien-
tations at a given temperature and pressure are found either
by computer simulations or by semianalytic approximate
methods@3#. In the latter approach one solves the Ornstein-
Zernike ~OZ! equation,

h~1,2!2c~1,2!5g~1,2!5r fE c~1,3!@g~2,3!1c~2,3!#dx3 ,

~1!

where rf is the number density of the fluid,h(1,2)
5g(1,2)21 andc~1,2! are, respectively, the total and direct
PCF’s, with suitable closure relations such as the Percus-
Yevick ~PY! equation, hypernetted chain~HNC! equation,
mean spherical approximation~MSA!, etc. Approximations
are introduced in the theory through these closure relations.
In Eq. ~1!, i[xi denotes both the locationr i of the center of
the i th molecule and its relative orientationVi , described by
the Euler anglesu, f, andc.

Compared to atomic fluids for which solutions to the OZ
equation have been obtained for a variety of pair potentials
over wide ranges of temperature and density, our knowledge
of the correlation functions of the fluid of nonspherical mol-
ecules is meager@4#. In recent years numerical methods
have, however, been developed to solve the OZ equation
with the PY and HNC closure relations for nonspherical mol-
ecules of fixed geometry. Patey and co-workers@5# have
solved both the HNC and PY equations for systems of hard
ellipsoids of revolutions~HER!, hard spherocylinders~HSC!
and for model fluids characterized by the pair potential of a
generalized Maier-Saupe type. Ram, Singh, and Singh@4#
have solved the PY equation for HER and for the Gay-Berne
potential@6#. Though the results found for these model po-
tentials are in qualitative agreement with computer simula-
tion results@4,5,7#, the quantitative agreements are not satis-
factory. Moreover, these theories, as for the case of atomic

fluids, are thermodynamically inconsistent, i.e., the pressure
obtained from the virial and compressibility routes have dif-
ferent values.

In this communication we extend the method of Rogers
and Young@8# and impose thermodynamic consistency on
the solutions for molecular fluids by modifying the closure
relation with a formula which contains an adjustable param-
eter and then by varying this parameter until consistency is
achieved. We show the suitability of this method for a fluid
of HER. The potential energy of the interaction of a pair of
HER is represented as

u~1,2!5 H` for r 12,D~ r̂ 12,V1 ,V2!

0 for r 12>D~ r̂ 12,V1 ,V2!,
~2!

whereD( r̂ 12,V1 ,V2) is the distance of closest approach of
two molecules with orientationsV1 and V2 in a direction
given by r̂ 12. For D( r̂ 12,V1 ,V2) we use the expression
given by the Gaussian overlap model of Berne and Pechukas
@9#.

The PY and HNC integral equation theories are given by
the OZ equation coupled with the closure relation

cPY~1,2!5 f ~1,2!@11g~1,2!#, ~3a!

and

cHNC~1,2!5h~1,2!2 ln@11h~1,2!#2bu~1,2!, ~3b!

respectively. Here f ~1,2!5exp@2bu~1,2!#21, and
b5(kBT)

21. We find it convenient to separate the overlap
and nonoverlap regions and choose

c~1,2!5H 212g~1,2! for overlap region,

cCL~1,2! for nonoverlap region.

~4a!

~4b!

Since in the overlap region 11h(1,2)5g(1,2) is zero, Eq.
~4a! is exact. ForcCL~1,2! one uses a closure relation given
by Eq. ~3! or any other form.

In order to reduce and solve Eq.~1! with a closure relation
it is convenient to expand all angle-dependent functions in
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spherical harmonics either in a space-fixed~SF! frame or in a
body-fixed ~BF! frame. For example, the expansion of the
direct PCF in a BF frame is written as

c~1,2!5c~r 12,V1 ,V2!

5 (
i1i2m

ci1i2m~r 12!Yi1m
~V1!Yi2mI

~V2!, ~5a!

wheremI 52mI , the coefficientsci1i2m(r 12) are defined by

ci1i2m~r 12!5E c~r 12,V1 ,V2!Yi1m
* ~V1!Yi2mI

* ~V2!dV1dV2 .

~5b!

For fixed r 12, we can split the integral in Eq.~5b! into two
parts corresponding to the regions of orientational space
where the particles do and do not overlap. Thus we have

ci1i2m~r 12!5E
OV
c~r 12,V1 ,V2!Yi1m

* ~V1!Yi2mI
* ~V2!dV1dV2

1E
NOV

c~r 12,V1 ,V2!Yi1m
* ~V1!

3Yi2mI
* ~V2!dV1dV2 , ~6!

where OV denotes the overlap and NOV in the nonoverlap
regions. Applying the relations~4! and using the orthonormal
properties of the spherical harmonics, Eq.~6! can be ex-
pressed in simple form

ci1i2m~r 12!5 (
i18 i28m8

@24pd
000
i18 i28m8

2g i
18 i28m8~r 12!

2ci
18 i28m8
CL

~r 12!#Ai1i2m

i18 i28m8~r 12!1ci1i2m
CL ~r 12!, ~7!

where

A
i1i2m

i18 i28m8~r 12!52
1

4p (
LL8M

F ~2i 111!~2i 1811!~2i 211!~2i 2811!

~2L11!~2L811!
G1/2Cg~ i 1i 18L;000!Cg~ i 2i 28L8;000!

3Cg~ i 1i 18L;mI m8MI !Cg~ i 2i 28L8;mmI 8M ! f LL8M~r 12!. ~8!

HereCg( i 1i 2i ;m1m2m) are the Clebsch-Gordon coefficients.
In actual applicationsci1i2m

PY (r 12) used in Eq.~7! are obtained from the expansion given in our earlier paper@4# and for

ci1i2m
HNC (r 12) for HER in @10#

ci1i2m
HNC ~r 12!5 (

i18 ,i19 ,i28 ,i29

1

4p F ~2i 1811!~2i 1911!~2i 2811!~2i 2911!

~2i 111!~2i 211!
G1/2Cg~ i 18i 19i 1 ;000!Cg~ i 28i 29i 2 ;000!

3 (
m8,m9

Cg~ i 18i 19i 1 ;m8m9m!Cg~ i 28i 29i 2 ;mI 8mI 9mI !E
r12

`

hi
19 i29m9~r 128 !

]

]r 128
@2g i

18 i28m8~r 128 !#dr128 . ~9!

To achieve thermodynamic consistency we use a closure
relation

ci1i2m
CL ~r 12!5s~r 12!ci1i2m

HNC ~r 12!1@12s~r 12!#ci1i2m
PY ~r 12!,

~10!

where

s~r 12!512e2ar12.

Herea, an adjustable parameter, is used to achieve thermo-
dynamic consistency. In writing Eq.~10! it is assumed that
the error introduced in the values of the PCF’s by the PY and
HNC closures are of the same nature for all harmonic coef-
ficients and that the exact values lie in between the values
given by these two theories. These appear to be reasonable
assumptions, at least for the fluid of HER for which detailed
comparison between the results found from the PY and HNC
theories with the computer simulation results are available

@5#. Hereinafter we refer to the closure relation of Eq.~10! as
the thermodynamically consistent~TC! relation.

The numerical methods used to solve Eq.~1! with the
closure relation is the same as described in our earlier paper
@4#. The number of terms included in the rotational invariant
expansion of the correlation function is the same as given by
set II of Table I of Ref.@4#. Here we report the results for a
fluid of HER. A state of a HER fluid is defined by the pack-
ing fractionh5(p/6)r f* x0, wherex052a/2b, 2a being the
major axis and 2b(5d0) the minor axis of a ellipsoid and
r f*5r fd0

3. All numerical calculations have been carried out
usingM51024 grid points with grid widthDr50.01, the
step size in Fourier space beingDk5p/MDr . All one di-
mensional integrals are evaluated using the trapezoidal rule.
The solution of the PY, HNC, and TC equations have been
obtained at several densities and at a different consistency
parameter forx051.0, 2.0 and 3.0.

Once the PCF’s are known, they can be used to calculate
pressure from the virial and compressibility equations in a
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straightforward way@3#. The value ofa is adjusted till the
value of pressure found from these two routes coincide with
each other. The value ofa found in this way forx051.0, 2.0,
and 3.0 are, respectively, 0.16, 0.33, and 0.50. Note that the
value ofa for x051.0 which corresponds to a hard sphere,
coincides with that of Rogers and Young@8#. The value ofa
is found to increase withx0 which means that the HNC com-
ponent in Eq.~10! increases withx0. This appears reasonable
from the fact that asx0 increases the ‘‘effective’’ repulsion
between two ellipsoids of revolution becomes more like a
repulsion between soft spheres. This softness increases with
increasingx0. One way to visualize this is to calculate the
‘‘effective’’ potential from the angle averaged Boltzmann
factor.

The kind of agreement one finds for results found from
the PY, HNC, and TC theories with the computer simulation
results is revealed from Figs. 1 and 2 in whichg221(r ) har-
monic coefficient of the total PCF is plotted as a function of
r for x052.0 and 3.0, respectively. The TC theory gives
better agreement with the simulation results. In Figs. 3 and 4
we plot pressure as a function of density forx052.0 and 3.0,
respectively. The values found from the TC relation agree

very well with the computer simulation results of Mulder and
Frenkel @11#. One may, however, note that the simulation
results given in these figures are for the exact HER overlap
which is not identical to the Gaussian model used by us. It
may therefore be possible that the results found for the
Gaussian model may not equally match with the simulation
results for all the harmonic coefficients of the PCF’s. Fur-
thermore, the value ofa needed to achieve self-consistency
for the exact HER overlap may also differ from those re-
ported here. But these observations do not change the con-
clusions reached here.

In a theory of freezing of molecular liquids into a nematic
phase the structural parameterĉi1i2

(0) defined as@12#

FIG. 2. The spherical harmonic coefficientg221(r )/4p in the
body-fixed frame forx053.0, h50.3702. The curves are the same
as in Fig. 1.

FIG. 4. Pressure as a function of fluid density forx053.0. The
curves are the same as in Fig. 3.

FIG. 1. The spherical harmonic coefficientg221(r )/4p in the
body-fixed frame forx052.0, h50.3702. The solid, dashed, dash-
dotted curves are, respectively, TC, PY, and HNC results. The solid
circles are MD results of Talbot, Perera, and Patey~Ref. @5#!.

FIG. 3. Pressure as a function of fluid density forx052.0. The
solid circles represent the Monte Carlo result of Mulder and Frenkel
~Ref. @11#! and the solid curve is the TC result. The dash-dotted and
the dashed curves are, respectively, PY and HNC results. Here,V
andC denote the virial and compressibility results, respectively.
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ĉi1i2
~0! 5~2i 111!~2i 211!r fE dr dV1dV2c~r ,V1 ,V2!

3Pi1
~cosu1!Pi2

~cosu2!

plays an important role. HerePi is a Legendre polynomial of
degreei and angles refer to a space-fixedz axis. Note that

ĉ00
~0! is related to the isothermal compressibility andĉ22

~0! and
the higher-order coefficient to the freezing parameters. The
quantity ĉ22

~0! and ĉ44
~0! are found to be very sensitive to the

approximations involved in a given integral equation theory.
In Fig. 5 we compare the values of the structural parameters
ĉ22

~0! and ĉ44
~0! found from these theories forx053.0. The PY

theory is believed to underestimate the angle-dependent part
of the PCF’s while the HNC theory overestimates them. This
is seen from the general instability condition for isotropic
liquid which is derived from the Kerr constant@13# and is
written as

12
1

5
ĉ22

~0!<0.

The HNC theory predicts that the isotropic fluid of HER will
be unstable forh>0.435 while for TC theory this is for
h>0.50 which is close to the isotropic-nematic transition
packing fraction@11#. For PY theory it is found that the
isotropic phase remains stable even at very high densities.

In conclusion we wish to emphasize that the thermody-
namically self-consistent theory proposed here provides ac-
curate values of both the pair-correlation functions and ther-
modynamic properties of molecular fluids.
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FIG. 5. The structural parameterĉ LL
(0) at x053.0. The solid, the

dash, and the dash-dotted curves are, respectively, PY, HNC, and
TC results.
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